Tuesday 14 November 2017

12 Month Moving Average Seasonality


Berechnung eines Saisonindex Dieses Handout ist zusammen mit der MS Excel-Datei seasonalindex. xls auf der Homepage der Econ437-Klasse zu verwenden. 1. Die monatlichen Preise in chronologischer Reihenfolge in Spalte D Ihrer Tabelle auflisten. Beispiel. Der Datensatz ist für Januar 1975 bis Dezember 1996, 264 Beobachtungen insgesamt. 2. Berechnen Sie eine zentrierte 12 Monate bewegte Summe, indem Sie die Preise für Jan bis Dezember addieren. Sie müssen mit der 6. Beobachtung beginnen. Beispiel. Für Juni 1975 (Beobachtung 6) 3.012.822.632.652.672.652.702.942.762.542.302.30 31.97 3. Wiederholen Sie Schritt 2 für den Rest des Datensatzes. Hinweis. Am Anfang des Datensatzes in Spalte E und 6 leere Zellen am Ende von Spalte E befinden sich 5 leere Zellen. 4. Berechnen Sie die 2 Monate bewegte Summe der Spalte E und geben Sie diese in Spalte F ein, beginnend mit der 7. Beobachtung. Es werden 6 leere Zellen am Anfang und am Ende der Spalte F vorhanden sein. Beispiel. Zur Beobachtung 7, 31.9731.3363.30. 5. Spalte F um 24 dividieren und in Spalte G beginnend mit Beobachtung 7 eintragen. Dies ist der zentrierte 12-Monats-Doppelgleitdurchschnitt (MA). 6. Geben Sie die ursprünglichen Kurse in Spalte D mit dem zentrierten 12-Monats-Durchschnitt in Spalte G ein, und geben Sie diese einzelnen Monatswerte in Spalte H beginnend mit Jul 1975, Beobachtung 7 ein. Es werden keine Werte für die ersten 6 Monate des Jahres 1975 und Die letzten 6 Monate von 1996. 7. Addieren Sie alle monatlichen Indizes für jeden Monat und durchschnitt sie, um den Raw-Indexwert zu erhalten. Siehe Tabelle unten. Finden Sie den Durchschnitt der Rohindizes. Teilen Sie jeden Monat Raw Index durch den Durchschnitt der Rohindizes, um den Adjusted Index. Smoothing Daten mit gleitenden Durchschnitten zu erhalten Wie eine flüchtige Datenreihe zu glätten Das ökonomische Problem Wirtschaftswissenschaftler verwenden Glättungstechniken, um zu helfen, den ökonomischen Trend in Daten zu entschlüsseln Trends in Daten Reihe, führen Forscher verschiedene statistische Manipulationen durch. Diese Operationen werden als ldquosmoothing Techniken bezeichnet und sind entworfen, um die kurzfristige Flüchtigkeit der Daten zu reduzieren oder zu eliminieren. Eine geglättete Reihe wird einer nicht geglätteten vorgezogen, da sie Änderungen in der Richtung der Wirtschaft besser erfassen kann als die nicht eingestellte Reihe. Saisonale Anpassung ist eine Smoothing-Technik Eine gemeinsame Glättung Technik in der Wirtschaftsforschung verwendet wird, ist saisonale Anpassung. Dieses Verfahren beinhaltet die Trennung von Schwankungen der Daten, die im gleichen Monat jedes Jahr wiederkehren (saisonale Faktoren). Solche Schwankungen können auf Jahresferien zurückzuführen sein (ein Sprung im Dezember-Einzelhandelsumsatz) oder vorhersehbare Wetterverhältnisse (eine Zunahme des Hausbaus im Frühjahr). Weitere Informationen zum saisonalen Anpassungsprozess finden Sie unter Saisonbereinigte Daten. Ein gleitender Durchschnitt kann Daten glatt machen, die nach Saisonbereinigung flüchtig bleiben In anderen Fällen behält eine Datenreihe Volatilität auch nach Saisonanpassung bei. Ein gutes Beispiel sind die Wohngenehmigungen, die vor allem aufgrund vorhersehbarer Wetterverhältnisse starke saisonale Schwankungen aufweisen. Selbst nach saisonaler Anpassung werden diese vorhersehbaren Muster eliminiert, allerdings bleibt eine erhebliche Volatilität bestehen (Grafik 1). Warum Weil saisonale Anpassung nicht auf unregelmäßige Faktoren wie ungewöhnliche Wetterbedingungen oder Naturkatastrophen, unter anderem. Solche Ereignisse sind unerwartet und können nicht isoliert werden, wie saisonale Faktoren können. Zum Beispiel haben Einfamilienhäuser erlaubt im Juni fallen, weil die wirtschaftlichen Bedingungen verschlechtert, oder war es nur ein wetter Juni als üblich Ökonomen verwenden eine einfache Glättung Technik namens ldquomoving averagerdquo dazu beitragen, die zugrunde liegende Trend in Wohnungsgenehmigungen und andere volatile Daten zu bestimmen. Ein gleitender Durchschnitt glättet eine Serie durch die Konsolidierung der monatlichen Datenpunkte in längere Einheiten von timemdashnamely ein Durchschnitt von mehreren Monaten Daten. Es gibt einen Nachteil, einen gleitenden Durchschnitt zu verwenden, um eine Datenreihe zu glätten. Da die Berechnung auf historischen Daten beruht, gehen einige der Zeitvariablen verloren. Aus diesem Grund verwenden einige Forscher einen ldquoweightedrdquo gleitenden Durchschnitt, wobei die aktuellen Werte der Variablen mehr Bedeutung erhalten. Eine andere Möglichkeit, die Abhängigkeit von vergangenen Werten zu reduzieren, besteht darin, einen ldquozentrischen gleitenden Durchschnitt zu berechnen, wobei der aktuelle Wert der Mittelwert in einem Fünfmonatsdurchschnitt mit zwei Verzögerungen und zwei Ableitungen ist. Die Leitzahlen sind prognostizierte Werte. Daten, die von der Dallas Feds Web site verfügbar sind, werden unter Verwendung der einfachen gleitenden durchschnittlichen Technik, die unten erklärt wird, justiert. Die technische Lösung Die Formel für einen einfachen gleitenden Durchschnitt ist: wobei y die Variable ist (z. B. Einfamilienhäuser), t die aktuelle Zeitperiode (wie der aktuelle Monat) und n die Anzahl der Zeitperioden ist Der Durchschnitt. In den meisten Fällen verwenden Forscher drei-, vier - oder fünfmonatige Bewegungsdurchschnitte (so dass n 3, 4 oder 5), mit dem größeren der n. Desto glatter die Serie. Real-World Beispiel Texas Housing Permits sind flüchtig von Monat zu Monat einen gleitenden Durchschnitt hilft, zeigen die zugrunde liegende Trend in der Tabelle Tabelle 1 verwendet die Formel oben, um einen Fünf-Monats-gleitenden Durchschnitt der Wohngebäude Genehmigungen zu berechnen. In der dritten Spalte wird die untere Figur (7,218) ermittelt, indem der Durchschnitt des laufenden Monats und der letzten vier Monate in Spalte 2 ermittelt wird. Die Reihe in der dritten Säule wird geglättet, und wie Schaubild 2 zeigt, ist sie viel weniger flüchtig als die ursprüngliche Reihe. Unter Verwendung der geglätteten Daten kann ein Forscher einfacher die zugrunde liegenden Trends in den Daten bestimmen sowie wesentliche Richtungsänderungen erkennen. Glättungstechniken reduzieren die Volatilität in einer Datenreihe, die es Analysten ermöglicht, wichtige wirtschaftliche Trends zu identifizieren. Die gleitende durchschnittliche Technik bietet einen einfachen Weg, um Daten jedoch zu glätten, weil sie Daten aus vergangenen Zeiträumen nutzt, kann es die letzten Änderungen im Trend verdecken. Glossar auf einen Blick Gleitender Durchschnitt: Eine Berechnung, die eine flüchtige Datenreihe durch Mittelung benachbarter Datenpunkte glättet. Saisonale Anpassung: Die Art der Glättungstechnik, bei der saisonale Schwankungen der Daten abgeschätzt und entfernt werden. Glättungstechnik: Ein statistischer Vorgang an ökonomischen Datenreihen zur Verringerung oder Beseitigung der kurzfristigen Volatilität. Spreadsheet Umsetzung der saisonalen Anpassung und exponentielle Glättung Es ist einfach, saisonale Anpassung durchführen und passen exponentielle Glättung Modelle mit Excel. Die unten aufgeführten Bildschirmbilder und Diagramme werden einer Tabellenkalkulation entnommen, die eine multiplikative saisonale Anpassung und eine lineare Exponentialglättung für die folgenden vierteljährlichen Verkaufsdaten von Outboard Marine darstellt: Um eine Kopie der Tabellenkalkulation selbst zu erhalten, klicken Sie hier. Die Version der linearen exponentiellen Glättung, die hier für Demonstrationszwecke verwendet wird, ist die Brown8217s-Version, nur weil sie mit einer einzigen Spalte von Formeln implementiert werden kann und es nur eine Glättungskonstante gibt, die optimiert werden soll. In der Regel ist es besser, Holt8217s Version, die separate Glättungskonstanten für Ebene und Trend hat. Der Prognoseprozess verläuft wie folgt: (i) Die Daten werden saisonbereinigt (ii) sodann für die saisonbereinigten Daten über lineare exponentielle Glättung Prognosen erstellt und (iii) schließlich werden die saisonbereinigten Prognosen zur Erzielung von Prognosen für die ursprüngliche Serie herangezogen . Der saisonale Anpassungsprozess wird in den Spalten D bis G durchgeführt. Der erste Schritt in der Saisonbereinigung besteht darin, einen zentrierten gleitenden Durchschnitt (hier in Spalte D) zu berechnen. Dies kann erreicht werden, indem der Durchschnitt von zwei einjährigen Durchschnittswerten, die um eine Periode relativ zueinander versetzt sind, genommen wird. (Eine Kombination von zwei Offset-Durchschnittswerten anstatt eines einzigen Mittels wird für die Zentrierung benötigt, wenn die Anzahl der Jahreszeiten gleich ist.) Der nächste Schritt besteht darin, das Verhältnis zum gleitenden Durchschnitt zu berechnen. Wobei die ursprünglichen Daten durch den gleitenden Durchschnitt in jeder Periode dividiert werden, was hier in Spalte E durchgeführt wird. (Dies wird auch Quottrend-Cyclequot-Komponente des Musters genannt, sofern Trend - und Konjunktur-Effekte als all dies betrachtet werden können Bleibt nach einer Durchschnittsberechnung über ein ganzes Jahr im Wert von Daten bestehen. Natürlich können die monatlichen Veränderungen, die nicht saisonal bedingt sind, durch viele andere Faktoren bestimmt werden, aber der 12-Monatsdurchschnitt glättet sie weitgehend Wird der geschätzte saisonale Index für jede Jahreszeit berechnet, indem zuerst alle Verhältnisse für die jeweilige Jahreszeit gemittelt werden, was in den Zellen G3-G6 unter Verwendung einer AVERAGEIF-Formel erfolgt. Die Durchschnittsverhältnisse werden dann neu skaliert, so daß sie auf das genau 100-fache der Anzahl der Perioden in einer Jahreszeit, oder 400 in diesem Fall, das in den Zellen H3-H6 erfolgt, summieren. Unten in der Spalte F werden VLOOKUP-Formeln verwendet, um den entsprechenden saisonalen Indexwert in jede Zeile der Datentabelle einzufügen, entsprechend dem Viertel des Jahres, das es repräsentiert. Der zentrierte gleitende Durchschnitt und die saisonbereinigten Daten enden wie folgt: Beachten Sie, dass der gleitende Durchschnitt typischerweise wie eine glattere Version der saisonbereinigten Serie aussieht und an beiden Enden kürzer ist. Ein weiteres Arbeitsblatt in derselben Excel-Datei zeigt die Anwendung des linearen exponentiellen Glättungsmodells auf die saisonbereinigten Daten beginnend in Spalte G. Über der Prognosespalte (hier in Zelle H9) wird ein Wert für die Glättungskonstante (alpha) eingetragen Zur Vereinfachung wird ihm der Bereichsname quotAlpha. quot zugewiesen (Der Name wird mit dem Befehl quotInsert / Name / Createquot zugewiesen.) Das LES-Modell wird initialisiert, indem die ersten beiden Prognosen gleich dem ersten Istwert der saisonbereinigten Serie gesetzt werden. Die hier verwendete Formel für die LES-Prognose ist die rekursive Einzelformel des Brown8217s-Modells: Diese Formel wird in der Zelle entsprechend der dritten Periode (hier Zelle H15) eingegeben und von dort nach unten kopiert. Beachten Sie, dass sich die LES-Prognose für die aktuelle Periode auf die beiden vorherigen Beobachtungen und die beiden vorhergehenden Prognosefehler sowie auf den Wert von alpha bezieht. Somit bezieht sich die Prognoseformel in Zeile 15 nur auf Daten, die in Zeile 14 und früher verfügbar waren. (Natürlich könnten wir statt der linearen exponentiellen Glättung einfach statt der linearen exponentiellen Glättung verwenden, könnten wir stattdessen die SES-Formel ersetzen. Wir könnten auch Holt8217s anstelle von Brown8217s LES-Modell verwenden, was zwei weitere Spalten von Formeln erfordern würde, um das Niveau und den Trend zu berechnen Die in der Prognose verwendet werden.) Die Fehler werden in der nächsten Spalte (hier Spalte J) durch Subtrahieren der Prognosen von den Istwerten berechnet. Der Quadratwurzel-Quadratfehler wird als Quadratwurzel der Varianz der Fehler plus dem Quadrat des Mittelwerts berechnet. (Dies ergibt sich aus der mathematischen Identität: MSE VARIANCE (Fehler) (AVERAGE (Fehler)). 2) Bei der Berechnung des Mittelwertes und der Varianz der Fehler in dieser Formel sind die ersten beiden Perioden ausgeschlossen, weil das Modell nicht tatsächlich mit der Prognose beginnt Die dritte Periode (Zeile 15 auf der Kalkulationstabelle). Der optimale Wert von alpha kann entweder durch manuelles Ändern von alpha gefunden werden, bis das minimale RMSE gefunden wird, oder Sie können das quotSolverquot verwenden, um eine genaue Minimierung durchzuführen. Der Wert von alpha, den der Solver gefunden hat, wird hier angezeigt (alpha0.471). Es ist in der Regel eine gute Idee, die Fehler des Modells (in transformierten Einheiten) zu zeichnen und ihre Autokorrelationen zu berechnen und zu zeichnen, bis zu einer Saison. Hier ist eine Zeitreihenfolge der (saisonbereinigten) Fehler: Die Fehlerautokorrelationen werden mit Hilfe der CORREL () - Funktion berechnet, um die Korrelationen der Fehler selbst mit einer oder mehreren Perioden zu berechnen - Details sind im Kalkulationsblatt dargestellt . Hier ist ein Diagramm der Autokorrelationen der Fehler bei den ersten fünf Verzögerungen: Die Autokorrelationen bei den Verzögerungen 1 bis 3 sind sehr nahe bei Null, aber die Spitze bei Verzögerung 4 (deren Wert 0,35 ist) ist etwas mühsam Saisonale Anpassungsprozess nicht vollständig erfolgreich war. Allerdings ist es eigentlich nur marginal signifikant. 95 Signifikanzbanden zum Testen, ob Autokorrelationen signifikant von Null verschieden sind, sind etwa plus-oder-minus 2 / SQRT (n-k), wobei n die Stichprobengröße und k die Verzögerung ist. Hier ist n gleich 38 und k variiert von 1 bis 5, so dass die Quadratwurzel von - n-minus-k für alle von etwa 6 ist, und daher sind die Grenzen für das Testen der statistischen Signifikanz von Abweichungen von Null ungefähr plus - Oder-minus 2/6 oder 0,33. Wenn Sie den Wert von alpha von Hand in diesem Excel-Modell variieren, können Sie den Effekt auf die Zeitreihen und Autokorrelationsdiagramme der Fehler sowie auf den Root-mean-squared-Fehler beobachten, der nachfolgend erläutert wird. Am Ende der Kalkulationstabelle wird die Prognoseformel quasi in die Zukunft gestartet, indem lediglich Prognosen für tatsächliche Werte an dem Punkt ausgetauscht werden, an dem die tatsächlichen Daten ablaufen - d. h. Wo die Zukunft beginnt. (Mit anderen Worten, in jeder Zelle, in der ein zukünftiger Datenwert auftreten würde, wird eine Zellreferenz eingefügt, die auf die Prognose für diese Periode hinweist.) Alle anderen Formeln werden einfach von oben nach unten kopiert: Beachten Sie, dass die Fehler für die Prognosen von Die Zukunft werden alle berechnet, um Null zu sein. Dies bedeutet nicht, dass die tatsächlichen Fehler null sein werden, sondern lediglich die Tatsache, dass wir für die Vorhersage davon ausgehen, dass die zukünftigen Daten den Prognosen im Durchschnitt entsprechen werden. Die daraus resultierenden LES-Prognosen für die saisonbereinigten Daten sehen folgendermaßen aus: Mit diesem für α-Periodenprognosen optimalen Wert von alpha ist der prognostizierte Trend leicht nach oben, was auf den lokalen Trend in den letzten 2 Jahren zurückzuführen ist oder so. Für andere Werte von alpha könnte eine sehr unterschiedliche Trendprojektion erhalten werden. Es ist normalerweise eine gute Idee, zu sehen, was mit der langfristigen Trendprojektion geschieht, wenn Alpha variiert wird, weil der Wert, der für kurzfristige Prognosen am besten ist, nicht notwendigerweise der beste Wert für die Vorhersage der weiter entfernten Zukunft sein wird. Dies ist beispielsweise das Ergebnis, das erhalten wird, wenn der Wert von alpha manuell auf 0,25 gesetzt wird: Der projizierte Langzeittrend ist jetzt eher negativ als positiv Mit einem kleineren Wert von alpha setzt das Modell mehr Gewicht auf ältere Daten Seine Einschätzung des aktuellen Niveaus und Tendenz und seine langfristigen Prognosen spiegeln den in den letzten 5 Jahren beobachteten Abwärtstrend anstatt den jüngsten Aufwärtstrend wider. Dieses Diagramm zeigt auch deutlich, wie das Modell mit einem kleineren Wert von alpha langsamer ist, um auf quotturning pointsquot in den Daten zu antworten und daher tendiert, einen Fehler des gleichen Vorzeichens für viele Perioden in einer Reihe zu machen. Die Prognosefehler von 1-Schritt-Vorhersage sind im Mittel größer als die, die zuvor erhalten wurden (RMSE von 34,4 statt 27,4) und stark positiv autokorreliert. Die Lag-1-Autokorrelation von 0,56 übersteigt den oben berechneten Wert von 0,33 für eine statistisch signifikante Abweichung von Null deutlich. Als Alternative zum Abkürzen des Wertes von Alpha, um mehr Konservatismus in Langzeitprognosen einzuführen, wird manchmal ein Quottrend-Dämpfungsquotfaktor dem Modell hinzugefügt, um die projizierte Tendenz nach einigen Perioden abflachen zu lassen. Der letzte Schritt beim Erstellen des Prognosemodells besteht darin, die LES-Prognosen durch Multiplikation mit den entsprechenden saisonalen Indizes zu veranschaulichen. Somit sind die reseasonalisierten Prognosen in Spalte I einfach das Produkt der saisonalen Indizes in Spalte F und der saisonbereinigten LES-Prognosen in Spalte H. Es ist relativ einfach, Konfidenzintervalle für einstufige Prognosen dieses Modells zu berechnen: Erstens Berechnen Sie den RMSE (root-mean-squared Fehler, der nur die Quadratwurzel der MSE ist) und berechnen Sie dann ein Konfidenzintervall für die saisonbereinigte Prognose durch Addition und Subtraktion zweimal des RMSE. (Im Allgemeinen ist ein 95-Konfidenzintervall für eine Ein-Perioden-Vorausprognose ungefähr gleich der Punktvorhersage plus-oder-minus-zweimal der geschätzten Standardabweichung der Prognosefehler, vorausgesetzt, die Fehlerverteilung ist annähernd normal und die Stichprobengröße Ist groß genug, sagen wir, 20 oder mehr Hier ist die RMSE anstelle der Standardabweichung der Fehler die beste Schätzung der Standardabweichung der zukünftigen Prognosefehler, weil sie auch die Zufallsvariationen berücksichtigt.) Die Vertrauensgrenzen Für die saisonbereinigte Prognose werden dann reseasonalisiert. Zusammen mit der Prognose, durch Multiplikation mit den entsprechenden saisonalen Indizes. In diesem Fall ist die RMSE gleich 27,4 und die saisonbereinigte Prognose für die erste künftige Periode (Dez-93) beträgt 273,2. So dass das saisonbereinigte 95-Konfidenzintervall von 273,2-227,4 218,4 auf 273,2227,4 328,0 liegt. Das Multiplizieren dieser Limits durch Decembers saisonalen Index von 68,61. Erhalten wir niedrigere und obere Konfidenzgrenzen von 149,8 und 225,0 um die Dez-93-Punktprognose von 187,4. Die Vertrauensgrenzen für Prognosen, die länger als eine Periode vorangehen, werden sich in der Regel aufgrund der Unsicherheit über das Niveau und den Trend sowie die saisonalen Faktoren erweitern, da der Prognosehorizont zunimmt, aber es ist schwierig, sie im Allgemeinen durch analytische Methoden zu berechnen. (Die geeignete Methode zur Berechnung der Vertrauensgrenzen für die LES-Prognose ist die Verwendung der ARIMA-Theorie, aber auch die Unsicherheit in den saisonalen Indizes ist eine andere.) Wenn Sie ein realistisches Konfidenzintervall für eine Prognose über mehrere Perioden bevorzugen, Fehler zu berücksichtigen, ist Ihre beste Wette, empirische Methoden zu verwenden: Zum Beispiel, um ein Vertrauensintervall für eine 2-Schritt-Vorausprognose zu erhalten, könnten Sie eine weitere Spalte auf der Kalkulationstabelle erstellen, um eine 2-Schritt-Voraus-Prognose für jeden Zeitraum zu berechnen Durch Booten der Ein-Schritt-Voraus-Prognose). Berechnen Sie dann die RMSE der 2-Schritt-Voraus-Prognosefehler und verwenden Sie diese als Basis für ein 2-stufiges Konfidenzintervall.

No comments:

Post a Comment